S]] Embedded Micro Solutions Version 2.1

Building a Robotics Platform using the EDKPlus and the

RobitcsConnections.com’s Traxster
By Sean D. Liming and John R. Malin
SJJ Embedded Micro Solutions

March 2008

The Microsoft® .NET Micro Framework is a perfect development environment for robotics. With
an off the shelf board and the right I/O, one could develop some very interesting robotic
applications from sensor networks to autonomous motion robots. There have been many toy
learning robots over the years, but useful robots are what many developers are looking to build.
Motion robot’s like the iRobot® Roomba® is a good example of robotics helping with daily life.
The Mars’ Rovers are great examples of scientific uses. To create these useful types of motion
robots, one needs the right platform that handles motion, sensors, a variety of 10, has the
processing power to run intelligent applications, and can be programmed using a common
language like C#.

When developing the EDK, we ran across RoboticsConnection Serializer and robot kits. The
Serializer board contains all the logic to control off the shelf DC motors, servos, and various
analog sensors. The Serializer takes basic commands from a single serial interface to control a
variety of devices, which is perfect use of the COM2 port in the EDKPIus. The Serializer's PC/104
form factor matches the EDKPIus’ iPac-9302 deluxe platform so the platforms can be mounted
together in a single system. The Serializer simplifies the development to control motion and
obstacle sensors, which frees up the iPac9302 Deluxe’s 1/0 (SPI, GPIO, SD/Card, and Ethernet)
for other devices such as GPS, cameras, temperature sensors, robotic arm, etc.

As a basic introduction, we have developed an application using the Traxster | robot to
demonstrate how the EDKPlus communicates with the Serializer. The robot will have a single IR
sensor mounted on a servo. The robot’s goal is to always move forward. While doing so, it will
scan left center, and right to see if there are any obstacles. If an obstacle is detected, the robot
will stop scan again, and turn in a direction that is not blocked. If all directions are blocked, back
up and scan again. If the backup happens more than 2 times, reverse direction and keep going.

Copyright © 2008 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
04/12/08 1



SJJ Embedded Micro Solutions Version 2.1

The iPac-9302 Deluxe has two COM ports. COML1 is always used for download and debug of
application. COM2 is used for standard RS-232 communication in the .NET Micro Framework
application. After building the Traxster platform, we mounted the iPac-9302 on top of the Traxster
leaving room for the batteries underneath. A serial ribbon big tail was connected from the iPac’s
COM2 header to the Serial RS232 Interface module on the Serializer board. The Serial interface
module already has the signals setup so you can plug the RS-232 directly into the connector. No
cross over or Null modem interfaces needed. A second pig tail was connected to the iPac’s
COM1 header so we can download the application via a null modem connection from the PC.

The Serializer gets its power from a 9.6V battery. The same kind of battery used in many hobby
car applications. To power the iPac-9302, we had to mount a 4-AA battery (6V) back via a switch
on the back of the Traxster using a Serializer Wiring Harness. A floppy power connector was
used to plug into the iPac-9302’s floppy power connector.

Warning: you can only power the iPac-9302 via the banana plug or floppy power connector, but
not at the same time. Applying power to both power sockets could result in injury and damage to
the board.

String commands are used to communicate with the Serializer. The protocol itself is very simple.
Send a command, maybe some parameters, and a carriage return.

>command paraml param2<CR>
ACK|NACK<CR><LF>

Depending on the command, you may get a return value or some acknowledgement (ACK) that
the command was received. If the command fails a no-acknowledgement (NACK) will be
returned. You will have to address certain commands in your application to clear out the buffer.

Setting up the serial port (COM2) is one of the first things that need to happen in the application.
First, the serial port configuration must be setup to communicate with the Serializer, which is
baud rate of 9200 and hardware flow control turned on (true). The second step is to instantiate
the COM2 port.

static SerialPort.Configuration COM2Port_Config = new
SerialPort.Configuration(SerialPort.Serial .COM2,SerialPort.BaudRate.Baud19200, true);

public SerialPort COM2Port = new SerialPort(COM2Port_Config);
Copyright © 2008 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.

WWW.Sjjmicro.com
04/12/08 2



S]] Embedded Micro Solutions Version 2.1

The commands are all strings, but byte arrays need to be sent using the .NET MF serial port
methods. The next step is to create a set of constants for moving the robot forward, left, right, and
reverse. Also constants are needed for Stop, Servo motion, and the Sensor. Finally we will define
the byte arrays for each command.

For the setting up the robots motion, the ‘mogo’ command is used to drive the two motors 1 and
2. The speed for each motor is also setup at this point. With some experimentation with the
program we set the speed to be about 10 to 15. A ‘\r’ is for the carriage return.

public static String sForward = "mogo 1:10 2:10\r"";
public static String sReverse = "mogo 1:-10 2:-10\r";
public static String sRight = "mogo 1:12 2:-12\r";
public static String sLeft = "mogo 1:-12 2:12\r"';
public byte[] boutForward = new byte[sForward.Length];
public byte[] boutReverse = new byte[sReverse.Length];
public byte[] boutRight = new byte[sRight.Length];
public byte[] boutLeft = new byte[sLeft.Length];

A better way of programming these parameters would be to have the speed be set by the
application instead of being hardcoded. One could create a library that offers this kind of
flexibility.

The Sensor and Stop are simple one line commands. The Servo must rotate the sensor to look
left, center, and right. Three servo commands are used to set the position of the servo. The servo
can be set to any position in 360°. The starting point will be 0° (center) so -45° will be used to
look left and 45° will be used to look right.

public static String sSTOP = "stop\r";

public static String sSensor = "sensor O\r";
public static String sServo_m45 = *servo 1:-45\r";
public static String sServo_C = "servo 1:0\r";

public static String sServo_p45 = "servo 1:45\r";

public byte[] boutStop = new byte[sSTOP.Length];

public byte[] boutSensor = new byte[sSensor.Length];
public byte[] boutServo_m45 = new byte[sServo_m45.Length];
public byte[] boutServo_C = new byte[sServo_C.Length];
public byte[] boutServo_p45 = new byte[sServo_p45.Length];

When the application runs, all the commands are encoded to UTF8 constants. The Green LED is
turned off to indicate that the application is go to run. For the ‘mogo’ commands, the
COM2port.Write method sends the data, but a COM2port.Read is required to clear the buffer of
the return ‘ACK”". If we leave the ACK in the buffer, the reading of the sensors will fail since the
ACK will be read in and not the value from the sensor. The same dummy read goes for the Stop
and Servo commands. Since we have to read sensor data from the Serializer, the binSensorArray
is used for these dummy reads.

The rest of the code handles the basic operation that we want the robot to perform

e The main While-loop keeps the robot moving forward and turn the servo so a sensor
reading can be taken.

e Scan() method — if an obstacle is detected, the robot stops and runs the Scan method.
The Servo is rotated from left, center, and right. The robot will then turn based on the
result from the sensor readings. The amount of turn left and right is controlled using the
thread.sleep(int) to delay the return to the main While-loop. The table below has the logic
used for the scan routine.

Motion Left Center Right
Reverse True True True
Right — long turn True True False
Reverse True False True
Right — short turn True False False

Copyright © 2008 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
04/12/08 3



S]] Embedded Micro Solutions Version 2.1

Left — long turn False True True
Reverse False True False
Left — short turn False False True
Forward False False False

SesnorlR() — Since reading the sensor is important to the application, a separate method
is used. The StringTolnt method is used to convert the output values from a byte array to
a string that can be used for comparison. The Serializer performs the basic analog to
digital conversion of the sensor. The closer the sensor is to an object the greater the
return value. The farther the sensor is to an object, the lower the return value. With some
testing you would see that these numbers change on an exponential curve. With some
testing, 175 was determined to be the best value for indicating the sensor found an object
and return a logic ‘true’.

Result Value vs. Distance (in)
600
500 r-\
400 / \
300
—\alue

100

0 T T T T T T T T T T T T T T T T T T T T T T T T 1

2 34567 8 91011121314151617181920212223242526

A separate program was created to test the sensor (Sharp GP2D12). Distance in inches is on the
horizontal axis, and Serializer output is on the vertical axis. The farther out from the sensor the
output becomes smaller. One thing to watch out for is when objects are very close because the
tests show that the output value drops off. 175 seemed like the best choice for the right obstacle
distance and handle this drop off close up. There is about 1 inch from the front of the sensor to

the font

of the Taxter so readings were taken starting at 2 inches.

Reversechecking() — the final method hands a situation where the robot backs up more
than twice. The robot could get stuck in a spot where it loops going back and forth, The
Reversechecking method helps to determine that the robot is stuck so just spin around
and start moving forward again.

Here is the whole code listing:

//
Copyright

© 2008 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.

WWW.Sjjmicro.com

04/12/08



SJJ Embedded Micro Solutions

Version 2.1

//Robotl
//SJJ Embedded Micro Solutions

//Copyright (c) 2004 - 2008 SJJ Micro Solutions, LLC. All Rights Reserved
//

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;
using Microsoft.SPOT.Hardware.SJJ;

namespace SJJ_MF_Console_Application

{

public class Program

public static void Main(Q)

{

Debug.Print(Resources.GetString(Resources.StringResources.Stringl));

App myApp = new AppQ;
myApp.RunQ;

public class App

{
static SerialPort.Configuration COM2Port_Config = new

SerialPort.Configuration(SerialPort.Serial .COM2,SerialPort.BaudRate.Baud19200, true);

public SerialPort COM2Port = new SerialPort(COM2Port_Config);

public static String sForward = "mogo 1:10 2:10\r";
public static String sReverse = "mogo 1:-10 2:-10\r"";
public static String sRight = "mogo 1:12 2:-12\r";
public static String sLeft = "mogo 1:-12 2:12\r";
public byte[] boutForward = new byte[sForward.Length];
public byte[] boutReverse = new byte[sReverse.lLength];
public byte[] boutRight = new byte[sRight.Length];
public byte[] boutLeft = new byte[sLeft.Length];

public static String sSTOP = "stop\r";

public static String sSensor = "sensor O\r";
public static String sServo_m45 = *servo 1:-45\r";
public static String sServo_C = "servo 1:0\r";

public static String sServo_p45 = "servo 1:45\r";

public byte[] boutStop = new byte[sSTOP.Length];

public byte[] boutSensor = new byte[sSensor.Length];
public byte[] boutServo_m45 = new byte[sServo_m45.Length];
public byte[] boutServo_C = new byte[sServo_C.Length];
public byte[] boutServo_p45 = new byte[sServo_p45.Length];

public int ReverseCheck = 0;

public byte[] binSensorArray = new byte[16]; //256 was an arbitraty number. it

could have been 8 or 512

public void RunQ)
{

System.Text_.UTF8Encoding Encoding = new System.Text.UTF8Encoding();

boutForward = Encoding.GetBytes(sForward);
boutReverse = Encoding.GetBytes(sReverse);
boutRight = Encoding.GetBytes(sRight);

boutLeft = Encoding.GetBytes(sLeft);
boutStop = Encoding.GetBytes(sSTOP);
boutSensor = Encoding.GetBytes(sSensor);

boutServo_m45 = Encoding.GetBytes(sServo_m45);
boutServo_C = Encoding.GetBytes(sServo_C);
boutServo_p45 = Encoding.GetBytes(sServo_p45);

OutputPort myGreenLED;

Copyright © 2008 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
04/12/08



S]] Embedded Micro Solutions Version 2.1

myGreenLED = new OutputPort(Pins.GREEN_LED, false);

while (true)

{
COM2Port._Write(boutForward, O, boutForward.Length);
Thread.Sleep(50);
//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);

COM2Port._Write(boutServo_m45, 0, boutServo_m45.Length);
Thread.Sleep(300);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
if (SensoriR())

myGreenLED .Write(true);

COM2Port._Write(boutStop, 0, boutStop.Length);
Thread.Sleep(50);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
Scan();

Thread.Sleep(1000);
myGreenLED .Write(false);
3

COM2Port._Write(boutForward, O, boutForward.Length);
Thread.Sleep(50);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);

COM2Port._Write(boutServo _C, 0, boutServo_C.Length);
Thread.Sleep(300);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
ifT (SensorIRQ))

myGreenLED .Write(true);

COM2Port.Write(boutStop, 0, boutStop.Length);
Thread.Sleep(50);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
Scan();

Thread.Sleep(1000);

myGreenLED _Write(false);
}

COM2Port._Write(boutForward, O, boutForward.Length);
Thread.Sleep(50);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);

COM2Port.Write(boutServo_p45, 0, boutServo_p45.Length);
Thread.Sleep(300);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
it (SensorIRQ))

myGreenLED _Write(true);

COM2Port._Write(boutStop, O, boutStop.Length);
Thread.Sleep(50);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
Scan();

Thread.Sleep(1000);

Copyright © 2008 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
04/12/08 6



S]] Embedded Micro Solutions Version 2.1

}

myGreenLED _Write(false);

public bool SensorlR(Q)

{

}

System.Text.UTF8Encoding Encoding = new System.Text.UTF8Encoding();
boutSensor = Encoding.GetBytes(sSensor);

COM2Port._Write(boutSensor, 0, boutSensor.Length);
Thread.Sleep(50);

COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
int finalNum = StringTolnt(binSensorArray);

//Change Sensor Sensitivity
it (finalNum > 175)

{

return true;
T
else
{

return false;
T

public void Scan()

{

System.Text.UTF8Encoding Encoding = new System.Text.UTF8Encoding(Q);
boutForward = Encoding.GetBytes(sForward);

boutReverse = Encoding.GetBytes(sReverse);

boutRight = Encoding.GetBytes(sRight);

boutLeft = Encoding.GetBytes(sLeft);

boutStop = Encoding.GetBytes(sSTOP);

boutSensor = Encoding.GetBytes(sSensor);

boutServo_m45 = Encoding.GetBytes(sServo _m45);

boutServo_C = Encoding.GetBytes(sServo_C);

boutServo_p45 = Encoding.GetBytes(sServo_p45);

bool ScanLeft = false;
bool ScanCenter = false;
bool ScanRight = false;

COM2Port.Write(boutServo_m45, 0, boutServo_m45.Length);
Thread.Sleep(500);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
it (SensorlRQ))

{
}

ScanLeft = true;

COM2Port._Write(boutServo_C, 0, boutServo_C.Length);
Thread.Sleep(500);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
if (SensorlR())

ScanCenter = true;

COM2Port._Write(boutServo_p45, 0, boutServo_p45.Length);

Copyright © 2008 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com

04/12/08



S]] Embedded Micro Solutions Version 2.1

Thread.Sleep(500);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
if (SensoriR())

ScanRight = true;
3

if (ScanLeft == true && ScanCenter == true && ScanRight == true)
{
COM2Port._Write(boutReverse, 0, boutReverse.lLength);
//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
Thread.Sleep(500);

COM2Port_Write(boutStop, O, boutStop.Length);
Thread.Sleep(50);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
ReverseCheck += 1;

Reversechecking();

Scan();

else if (ScanLeft == true && ScanCenter == true && ScanRight == false)
{
COM2Port._Write(boutRight, 0, boutRight.Length);
//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
Thread.Sleep(1000);

COM2Port._Write(boutStop, O, boutStop.Length);
Thread.Sleep(50);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);

3
else if (ScanLeft == true && ScanCenter == false && ScanRight == true)
{

COM2Port._Write(boutReverse, 0, boutReverse.Length);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
Thread.Sleep(500);

COM2Port._Write(boutStop, 0, boutStop.Length);
Thread.Sleep(50);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
ReverseCheck += 1;

Reversechecking();

Scan();

¥
else if (ScanLeft == false && ScanCenter == true && ScanRight == true)
{
COM2Port._Write(boutLeft, O, boutLeft.Length);
//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
Thread.Sleep(1000);

COM2Port._Write(boutStop, O, boutStop.Length);
Thread.Sleep(50);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);

else if (ScanLeft == false && ScanCenter == false && ScanRight == true)

COM2Port._Write(boutLeft, O, boutLeft.Length);
//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);

Copyright © 2008 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
04/12/08 8



S]] Embedded Micro Solutions

Version 2.1

Thread.Sleep(500);

COM2Port_Write(boutStop, 0, boutStop.Length);
Thread.Sleep(50);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);

}
else if (ScanLeft == true && ScanCenter == false && ScanRight ==
{
COM2Port._Write(boutRight, 0, boutRight.Length);
//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
Thread.Sleep(500);

COM2Port_Write(boutStop, O, boutStop.Length);
Thread.Sleep(50);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);

false)

}
else if (ScanLeft == false && ScanCenter == false && ScanRight == false)

{
COM2Port._Write(boutForward, 0, boutForward.Length);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
Thread.Sleep(500);

COM2Port_Write(boutStop, 0, boutStop.Length);
Thread.Sleep(50);

//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);

}
else if (ScanLeft == false && ScanCenter == true && ScanRight == false)

{
COM2Port._Write(boutReverse, 0, boutReverse.Length);
//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
Thread.Sleep(500);
COM2Port_Write(boutStop, O, boutStop.Length);
Thread.Sleep(50);
//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
ReverseCheck += 1;
Reversechecking();
Scan();

b

// Assumption: number field in byte string has ASCII space, 0x20, after it:
// <preampble characters><ASCIl digits><ASCll space><trailer characters>

// Number is always positive

public int StringTolnt(byte[] AsciiString)
{

int iReturnval = 0;

int idx;

int iPwrTen; //Conversion multiplier

for (idx = 0; AsciiString[idx] != 0x20; idx++)

; //Do nothing
3

idx--; //Back up to units digit

for (iPwrTen = 1; ((AsciiString[idx] >= 0x30) && (AsciiString[idx] <= 0x39));

idx--)

Copyright © 2008 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
04/12/08



S]] Embedded Micro Solutions Version 2.1

{
iReturnval += (AsciiString[idx] & OxOF) * iPwrTen; //Mask off upper
ASCII nibble and convert to power of ten
iPwrTen *= 10;
¥

return iReturnval;

//need to know if we backed up more than once and spin around to avoid
//being stuck. The global ReverseCheck int is used
public void Reversechecking()

{
System.Text_UTF8Encoding Encoding = new System.Text.UTF8Encoding();
boutRight = Encoding.GetBytes(sRight);
boutLeft = Encoding.GetBytes(sLeft);
boutStop = Encoding.GetBytes(sSTOP);
if (ReverseCheck >= 2)
{
//Spin around
COM2Port._Write(boutRight, O, boutRight.Length);
//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
Thread.Sleep(1800);
COM2Port._Write(boutStop, 0, boutStop.Length);
Thread.Sleep(50);
//Dummy read to clear buffer of ACK
COM2Port.Read(binSensorArray, 0, binSensorArray.Length, 20);
ReverseCheck = 0;
3
3

The code is not the prettiest we've put together, but it demonstrates basic serial port
communications with another platform. Now let's re-do the application using a managed code
driver (.NET library) for the Serializer.

//Robot3
//SJ3J Embedded Micro Solutions
//Copyright (c) 2004 - 2008 SJJ Micro Solutions, LLC. All Rights Reserved

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;

using Microsoft.SPOT.Hardware.SJJ;

using RoboticsConnection.SerializerLibMF;

namespace SJJ_MF_Console_Application

public class Program

{
public static void Main()
{
Debug.Print(Resources.GetString(Resources.StringResources.Stringl));
App myApp = new AppQ);
myApp.RunQ);
}

Copyright © 2008 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
04/12/08 10



S]] Embedded Micro Solutions

Version 2.1

public class App
{

private static PidMotorController pmc = new PidMotorController();
private static ServoMotorController sc = new ServoMotorController();
private static AnalogSensor sensor = new AnalogSensor();

public int ReverseCheck = 0;

public void RunQ)
{

OutputPort myGreenLED;

myGreenLED = new OutputPort(Pins.GREEN_LED, false);

int mySensorOut = O;

while (true)

pmc.TravelAtSpeed(10, 10);
sc.SetPosition(l, -45);
Thread.Sleep(500);

mySensorOut = sensor.Reading(0);
Thread.Sleep(100);

if (mySensorOut > 100)

{

myGreenLED .Write(true);
pmc.Stop(Q);

Scan();
Thread.Sleep(500);
myGreenLED.Write(false);

3

Thread.Sleep(500);
pmc.TravelAtSpeed(10, 10);
sc.SetPosition(l, 0);
Thread.Sleep(500);

mySensorOut = sensor.Reading(0);
Thread.Sleep(100);

if (mySensorOut > 100)

myGreenLED .Write(true);
pmc.Stop();

Scan();
Thread.Sleep(500);
myGreenLED .Write(false);

}
Thread.Sleep(500);
pmc.TravelAtSpeed(10, 10);
sc.SetPosition(l, 45);
Thread.Sleep(500);
mySensorOut = sensor.Reading(0);
Thread.Sleep(100);
it (mySensorOut > 100)
{
myGreenLED _Write(true);
pmc.StopQ);
Scan();
Thread.Sleep(500);
myGreenLED _Write(false);

}
Thread.Sleep(500);

}

public void Scan()
{

bool ScanLeft = false;

Copyright © 2008 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
04/12/08

11



S]] Embedded Micro Solutions

Version 2.1

bool ScanCenter = false;
bool ScanRight = false;

Thread.Sleep(500);
sc.SetPosition(l, -45);

if (sensor.Reading(0) > 100)

ScanLeft = true;

}

Thread.Sleep(500);
sc.SetPosition(l, 0);

if (sensor.Reading(0) > 100)

ScanCenter = true;

}

Thread.Sleep(500);
sc.SetPosition(l, 45);

if (sensor.Reading(0) > 100)

ScanRight = true;

}
Thread.Sleep(500);

ifT (ScanLeft == true && ScanCenter == true && ScanRight == true)

{
pmc.TravelAtSpeed(-10,
Thread.Sleep(500);
pmc.Stop();
Thread.Sleep(50);
ReverseCheck += 1;
Reversechecking();
Scan();

-10);

3
else if (ScanLeft == true && ScanCenter == true && ScanRight == false)

{

pmc.TravelAtSpeed(12, -12);

Thread.Sleep(1000);
pmc.Stop();
Thread.Sleep(50);

3
else if (ScanLeft == true && ScanCenter == false && ScanRight == true)

{
pmc.TravelAtSpeed(-10,
Thread.Sleep(500);
pmc.Stop();
Thread.Sleep(50);
ReverseCheck += 1;
Reversechecking();
Scan();

else if (ScanLeft == false
{
pmc.TravelAtSpeed(-12,
Thread.Sleep(1000);
pmc.Stop();
Thread.Sleep(50);

¥

else if (ScanLeft == false

{
pmc.TravelAtSpeed(-12,
Thread.Sleep(500);
pmc.StopQ);
Thread.Sleep(50);

-10);

&& ScanCenter == true && ScanRight == true)

12);

&& ScanCenter == false && ScanRight == true)

12);

}
else if (ScanLeft == true && ScanCenter == false && ScanRight == false)

{
pmc.TravelAtSpeed(12, -12);
Thread.Sleep(500);
pmc.Stop(Q);
Thread.Sleep(50);

b

Copyright © 2008 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.

WWW.Sjjmicro.com
04/12/08

12



S]] Embedded Micro Solutions Version 2.1

else if (ScanLeft == false && ScanCenter == false && ScanRight == false)

{
pmc.TravelAtSpeed(10, 10);
Thread.Sleep(500);
pmc.Stop(Q);
Thread.Sleep(50);

else if (ScanLeft == false && ScanCenter == true && ScanRight == false)

{
pmc.TravelAtSpeed(-10, -10);
Thread.Sleep(500);

pmc.Stop(Q);
Thread.Sleep(50);
ReverseCheck += 1;
Reversechecking();
Scan();

public void Reversechecking()

{

if (ReverseCheck >= 2)
{

//Spin around
pmc.TravelAtSpeed(-12, 12);
Thread.Sleep(1800);
pmc.StopQ);

ReverseCheck = 0;

Developed by RoboticsConnection, the managed code library simplifies the commands, and
makes the code much shorter and easier to debug. The library supports the different sensors and
encoders so you can take full advantage of the Serializer capability. Being able to create reusable
code is one of the many advantages of .NET programming.

To make the whole robot more robust more sensors and a different logic detection scheme could
be added. With the ability to control the robotic motion and sensors via a single serial channel,
the rest of the iPac-9302 Deluxe’s 10 (GPIOs, PWM, ADC, SPI, SD/MMC, Ethernet) is free for
other experiment use. With a solid platform for motion and obstacle sensors, you can build-up a
robot to target a specific task.

Windows is a registered trademark of Microsoft Corporation.

Copyright © 2008 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
04/12/08 13



